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STUDY OF STABILITY OF 
LARGE MANEUVERS OF AIRPLANES 

BY 
Emile K . Haddad 

LOCKHEED-GEORG IA COMPANY 

SUMMARY 

A predictive method of nonlinear system analysis i s  used to investigate airplane stability 
and dynamic response during rolling maneuvers. The maneuver rol I -rate i s  not assumed 
to be constant, and the airplane motion i s  represented by a set of coupled nonlinear 
differential equations. 

In the first portion of the study the general rolling maneuver i s  kinematically specified by its 
roll-rate variation p(t). A method for relating the airplane dynamic response to p(t) i s  
developed. The method provides analytical expressions for the motion variables in terms of 
the maneuver descriptor p(t). The accuracy and utilization of the method i s  illustrated with 
specific values of airplane parameters. A parameterized family of rolling maneuvers i s  con- 
sidered, for which the method i s  used to predict specific dynamic response information, such 
as the dependence of the peak angle-of-attack excursion on the maneuver parameters. The 
accuracy of the method i s  shown to be substantially better than that of previous linear 
analytical methods based on approximating the maneuver roll-rate by a constant. 

In the second portion of the study the stability and motion of the airplane in response to an 
arbitrary actuation of aileron input i s  considered. Analytical expressions relating motion 
variables to aileron input are obtained. Explicit analytical bounds on the motion variables 
are derived. A stability criterion which guarantees nondivergence of motion in response to 
aileron actuation i s  presented. 



INTRODUCTION 

The traditional techniques of flight dynamics analysis have depended on a number of 
simplifying assumptions and approximations, applied to the complete equations of motion of 
the aircraft. These equations may be exactly represented by a set of coupled, nonlinear, 
differential equations. The conventional analytical approaches have generally resorted to 
various ways of approximation aimed at reducing the problem to the solution of a set of linear 
differential equations in which the longitudinal and lateral dynamics are uncoupled. The 
adequacy of such assumptions and approximations leading to decoupling and linearization can 
be justified only for restricted ranges of dynamic performance: small deviations from steady 
trimmed straight flight. 

The loss of dynamic -response information incurred by the conventional simplified 
analyses i s  forcefully exemplified by the well-known rotational coupling problem. Flight 
tests and simulations have indicated that slender aircraft undergoing rapid rolling maneuvers 
may exhibit certain dynamic response characteristics, such as divergence in yaw and pitch or 
excessive excursions in sideslip and angle of attack, which are not predictable from the 
linearized, decoupled equations. Beginning with the work of W. H. Philips (ref. l ) ,  several 
studies (for example, ref. 2,3,4) were made to investigate analytically the characteristics of 
the airplane dynamic response during rolling maneuvers. A l l  of these studies were based on 
assumptions and approximations sufficient to linearize the equations of motion while retaining 
some degree of coupling. Key assumptions for linearization were the requirements of constant 
roll rate and constant forward speed, negligible second-order terms except those involving 
roll rate, small magnitudes of side and vertical velocities, negligible weight components, and 
linearized aerodynamics. These approximations, by eliminating a l l  the nonlinear product 
terms, reduce the degree of coupling among the component equations, and consequently dis- 
card some of the dynamic response characteristics attributable to such coupling. Further- 
more, the various assumptions made about the dynamic variables are not always representative 
or realistic. A roll maneuver, for instance, may not be executed at constant roll rate, but 
i t  would typically involve a gradual increase in rol l  rate. 

Apart from the analytical studies of the rotational coupling problem, one finds investi- 
gations primarily involving extensive simulations on the analog or digital computer (for 
example, ref. 5). In post-design stages, the computer i s  quite effective for verifying and 
checking specific information about the dynamic response of a given aircraft. However, the 
computer does not lend itself to the formulation of predictive stability and dynamic response 
criteria in concise mathematical form. 

In this study, the airplane dynamic response and stability during rolling maneuvers i s  
investigated using nonlinear system analysis techniques. The investigation i s  based on a new 
approach for nonlinear system analysis developed by E. K . Haddad at the Lockheed-Georgia 
Company (ref. 6, 7, 8). The study develops two analytical methods for predicting dynamic 
response and stability information from the nonlinear equations of motion representing general 
rolling maneuvers for which the rol l  rate or the aileron input may exhibit any time variation. 
The first method considers the maneuver to be specified by its rol l  rate t ime history p(t) . In 

2 



the second method, the maneuver i s  specified by the aileron time-history input 6 (t). This 
method leads to a stability criterion which defines the range of aileron inputs forawhich 
nondivergent motion can be guaranteed. 

I 
I 
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- 
6 =  a 6  
r q ar 

angles of yaw, pitch, and roll, respectively 

AIRPLANE DYNAMIC RESPONSE DURlN G AN ARBITRARY 

ROLLING MANEUVER 

The first portion of this study was devoted to the analysis of the dynamic response of the 
airplane during an arbitrarily specified rolling maneuver described by its roll-rate variation 
p(t). The problem being considered i s  that of relating the airplane stability and dynamic 
response characteristics during a rolling maneuver to the kinematic behavior in  rol l  p(t). 
In the second portion of the study, the airplane dynamic response i s  directly related to the 
aileron actuation input 6a(t). One rationale for relating the airplane dynamics to the roll- 
rate p(t) rather than to the aileron input &(t) i s  the fact that during the preliminary design 
effort the specifics of the flight control system may not be known in detail, yet one may be 
interested in the airplane dynamic performance and capabilities during a rolling 
maneuver, which would then be appropriately specified by the kinematic descriptor p(t) 
rather than the control input +,(t). 

Analytical Method for Predicting Airplane Motion During a 
Rolling Maneuver of Arbitrary Rol I-rate Variation 

A main result of this study was the development of an analytical method for predicting 
the dynamic response of the aircraft performing a rolling maneuver of arbitrary roll-rate 
variation p(t). 

The maneuver i s  specified by the roll-rate time-history p(t), and the method provides 
approximate analytical expressions for the response, in which the roll-rate p(t) appears as 
an unspecified parameter function p(t). 

The method is  based on the viewpoint that rolling maneuver may be meaningfully des- 
cribed by specifying the variation of roll-rate p(t). From this standpoint, the f i r s t  four 
equations of motion may be regarded as a mapping between p(t) and x(t) = [a(t), @(t), q(t), 
r (t) I  : x(t) = M[p(t)I 
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The method provides,for any given aircraft, approximate analytical expressions for the 
nonlinear functional M, in  which the response x(t) i s  expressed explicitly in terms of the 
argument p(t). The method describes a procedure for obtaining successive expressions repre- 
senting progressively better approximations to the exact mapping M. 

Equations of motion for the "basic case".- The effort in  this study has been primarily 
directed towards consideration of the "basic case" involving a rolling maneuver at constant 
forward speed. An adequate representation of the dynamics of this maneuver i s  given by the 
five-degree-of-freedom equations of motion shown be low: 

~ S C  cy =mg 
LCYO 

a=cy0 + A c y ,  

+m b cy; + p c y p p )  b + cyop ++sincp 

- -  I - I  . . I  

b b -C r + - C  
I - I  

I nr 2V np 
Z Z 

CP'P 

. 
e = q cosy - r sincp 

$ = q sincp + r coscp 
. 

(4) 

The equations are referred to principal inertia axes. Rudder and elevator are 
assumed fixed during the maneuver. 
The aerodynamic coefficients are linearized. 
in equations (1) and (2), and the kinematic relations (6) through (8), are obtained 
under the assumption that pitch and yaw andles (e  , $) remain small during the 

Cnsa and Cy6. are assumed to be negligible. 
The simplified nonlinear gravity terms 
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rolling maneuver. Consequently, equations (1) - (6) are sufficient to characterize the 
maneuver. Furthermore, equation (6) can be used to express the bank angle cp as 

This expression can be used to eliminate the variable cp from the nonlinear gravity terms of 
equations (1) and (2). The maneuver would then be representable by the five equations (1) - 
(5) with variables a, p, p, q, and r. During the init ial study of the ”basic case” the non- 
linear weight effects were ignored. 

Outline of the method.- Letting x = [a,p,q,rL the first four equations of motion may 
be written as 

The system in (9) may be viewed as a nonlinear time-varying mapping from p(t) into x(t): 

Note that in (9) the argument p(t) appears in the forcing vector u and the coefficient 
matrix A. Thus, doubling the input p(t) does not, in general, result in doubling the output 
x(t), which makes M a nonlinear system. 

Let p(t) be written as 

where P i s  a constant, which may be conveniently chosen as the average value of p(t). 
From (9) and (lo), one has 

= A(P +i(t))x + u(p(t)) ( 1  1) 
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where th-ematrix A has been separated into a constant matrix 4 and a time dependent 
matrix A. A first approximation to x(t) may be obtained by ignoring the second term in 
(12). Thus, let xl(t) be the solution to 

The function xl(t) may be conveniently expressed in terms of the input p(t) by using the 
impulse response matrix (Green's function matrix) of the system (1 3): 

Note that x,(t) takes into account the exact time-history in  roll p(t) as i t  appears in 
u(p(t)), and therefore xl(t) i s  expected to furnish a better approximation to the response 
x(t) than would be obtained from the previous studies based on the approach of replacing 
p(t) by a constant. 

Referring back to the basic equations of motion in  (121, and instead of ignoring the term 
A(p(t))x, we now replace x(t) in A(p(t))x by the first approximation x,(t). Let x2(t) be the 
zolution to 

N N  

. 
+ u,(P(t)) x2 - Aox2 

- 

N 

where ul(p) = A H1(p) + u(p). Again, x (t) can be expressed in  terms of p(t): 2 

The function x (t) i s  expected to 

procedure can be repeated, to obtain 
2 be a l'better'' approximation to x(t) than x,(t). This 

I 

successive mappings x (t) = H (p(t)) which represent 
n n 

closer approximations to the mapping x(t) = M(p(t)). 

Analytical expressions for the dynamic response.- The method outlined above may be 
used to obtain explicit analytical expressions for the dynamic response successive approxima- 
tions x (t) in  terms of the maneuver roll-rate p(t). For this purpose, let H(t) be the impulse 
response matrix corresponding to the coefficient matrix A,: 

n 

Ao t 
H(t) = e 
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Repeating the steps outlined above, and using H(t) to relate x (t) and p(t), one obtains the 

foI lowing general expression for x (t): 
n 

n 
n t  

Xn(t) = s' Uk(t,Z)dZ 
k=l 0 

Where the terms u (t,z) are defined by the following recurrence relationship k 

Accuracy of the Method and the Analytical Expressions 

The usefullness of the above predictive method and the analytical expressions derived 
from i t  depends on two considerations: 

1 .  Does the sequence of approximate expressions obtained by the method 

converge to the exact airplane response x(t)? 

2. If convergence i s  guaranteed , how fast i s  the rate of convergence? What i s  the 
magnitude of the error expected in the successively closer approximations{ x,(t), x2(t), x3(t), 

> *  

- - - - - - -  

Convergence of the analytical expressions { x (t)) to the exact airplane response x(t). - 
n 

The Following i s  an analytical proof which establishes rigorously the convergence of 

{ xn(t)) to x(t): 

Recall from (9) and (12) that the aircraft response during a rolling maneuver p(t) i s  given by 
the solution of the equation . 

x = A(t)x + u(t) (21) 

. N 

x = A x + A(t)x + u(t) 
0 

12 



and from (19) and (20) the expression for the nth approximate response is 
n t  

k=l 0 
x = t / uk(t,z)dz (23) n 

where 

u (t,z) = k Z 

H(t - z) &) [ uk-,(zly)dy 
0 

k = 2, 3, . ..n 

A t  
0 

H(t) =e 

We now show that Xw is indeed the exact solution to the airplane response equation (22). 

" t  
x W  = 1 Uk(t,Z)dZ (26) 

. o J  t 

x W  

k=l 0 

= 1 d Juk(t,z)dz 
k=l dt 0 

Using Leibnitz rule for differentiation, one has 

From the expression for H( t), one obtains 

A t  
0 H = A e  = A H  

0 0 

H(0) = I (Identity Matrix) 

From (24) and (25) one has 

ul(t,t) = H(0) u(t) = u(t) 

N t  
k=2,3,. . . 

= A u (t,z) 
0 1  



= A u (t,z) k = 2,3, 
o k  

Rewriting the expression in  (27) as 

and substituting the expressions (28) through (31), one obtains 

o J t  W t 
= 1 Aouk(t,z)dz +u(t) + 1 A(t) u (t,z)dz 6 k-1 

xW 

k=l 0 k=2 

Substituting the expression from (26) into (32), 

A = A x +&)x + u(t) 
Q) o m  W 

Thus x w  i s  the exact solution to (22), and therefore represents the required airplane response. 

Accuracy of the approximate responses xm(t) for a parametrized family of rolling 

maneuvers.- A study was conducted in  order to assess the comparative accuracy of the 
approximations x i ,  x2, and x3 resulting from different members of a class of rolling 
maneuvers. A second objective of the study was to compare the accuracy of XI, x2, 
and x3, as obtained by the present method, to the accuracy of the approximation xc(t) 
obtained by replacing p(t) i n  the equations of motion by a constant (average value of 
p(t) over the duration of the maneuver). The response xc(t) represents the type of result 
that would be obtained if one attempts to apply previous methods (Stemfield, MouI , 
and Brennan) for the prediction of the airplane dynamic response to a realistic rolling 
maneuver comprising a gradual ly increasing roI I-rate followed by a gradual ly decreasing 
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roll-rate. The study was carried out using the numerical values of the mass and aerodynamic 
parameters of the F-100A. These parameters are shown in Table I. The parametrized class of 
rolling maneuvers used i s  given by 

t >2n 
1*2dP -0.6t - = P  (e m -1)e 

P m 
m 

Each member of the family p(t) , corresponding to a specific choice of the parameter 
)pm 

Pm, represents a banking maneuve;'of 360" executed with a different roll-rate variation. 
The value of Pm is  indicative of the level of aileron applied during the execution of the 

maneuver. The study was made using the following values of P,: 

P = -1, -1.5, -2.0, -2.5, -3.0, -3.5, -4.0 rad/sec. 
m 

For these values of Pm, the members of {p(t)} are shown in figure 1. 

It should be noted that, for the configuration parameters used in this study, the Phillips 
criterion indicates the airplane is  unstable for roll-rates between -1.86 and -2.33 rad/sec. 
This implies that, for the maneuvers represented by the values P, = -2.5, -3.0, -3.5, -4.0, 
the airplane goes thru unstable modes of motion during the execution of the maneuver. This 
i s  depicted graphically in figure 1, which shows a plot of p(t) p,. { }  

For each value of Pm, the computer was used to obtain the response x(t), the 
approximate responses x,(t), x2(t), x3(t) as provided by the present method, and the approxi- 
mate response xc(t) based on the constant roll assumption of previous methods. For each 
value of Pm, the time histories of a, a i ,  9, a3, act @, 4 , B2, $3, and 8, were plotted. 
The results obtained are shown in  figures 2 thru 15. Inspection of these results leads to the 
f ol I owing conc I usi ons: 

1 Although al l  of the rol l  maneuvers considered amount to the same bank-angle, 
namely, 360°, the resulting time-histories of a and @ are strongly dependent on the variation 
of the roll-rate p(t). This fact points to inadequacy of replacing the roll-rate p(t) by a 
constant value for realistic maneuvers involving variation in roll-rate. 
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2. The peaks of croccurred consistently during the termination phase of the maneuver. 
The peaks of @occurred during the termination phase of the maneuvers represented by P, = 
-1 ,  -1.5. Relatively large peak values of @ still occurred in the termination phase of the 
maneuvers P, 2 2. Again, these facts cannot be predicted from an analysis based on a 
constant rol I-rate approximation. 

3. The error plots in figures 16 thru 22 indicate a fairly good rate of convergence of 
the approximate responses xn(t) towards the response x(t). 

4.  The results in figures 16 thru 22 indicate the substantially better results obtained 
by the present method over the methods based on approximating the maneuver roll-rate by 
a constant value. For each of the maneuvers considered, the response xl(t) represented a 
significantly better approximation to the airplane response x(t) than the approximation 
xc(t) obtained by replacing p(t) by i t s  average value. 

Comparison with constant rol I-rate methods.- In the previous section, comparison was 
made between the accuracy of the method for obtaining airplane dynamic response as devel- 
oped in  this study, and the accuracy of the methods based on the constant roll-rate assump- 
tion. In that comparison, the value of the constant roll-rate used was taken as the average 
value of the roll-rate variation p(t). In this regard, two questions naturally arise: 

1 .  I s  the average value of the roll-rate the best value that can be used in the constant 
rol I -ra te methods? 

2. How does the accuracy of the method developed in this contract compare with the 
accuracy of the constant roll-rate method using values other than the average value of roll- 
rate? 

These questions were considered for the case of the family of rolling maneuven studied 
previously. For each rolling maneuver, characterized by P,, the response in crand @ was 
compared with the responses obtained from a number of constant roll-rate maneuvers ranging 
between 0.8 rad/sec to 3.0 rad/sec, and to responses cr2 and 82 obtained by the methods 
used in  this study. The results are shown in Table II. Each of the exact response in a(or 8) 
was compared with the approximate responses resulting from constant roll-rates of 0.8, 1 .O, 
1.2, 1.4, 1.6, 1.8, 2.0, 2.5, and 3.0 rad/sec, and with the approximate response a2 
(or @, obtained by the methods of this study. This i s  illustrated in figures 23 and 24 for 
the maneuver rerxesented bv 9 = -2. 
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Table I I  indicates for each maneuver the values of constant roll-rate for which the correspond- 
ing response. Seems to give the least average error and the closest peak estimate. These are 
shown in rows 3 and 4 of the tabulation. Row 5 i s  the average of the values i n  rows 3 and 4, 
and may be considered as the "optimum" choice of constant roll-rate. Row 6 compares this 
optimum values of constant roll-rate with the average value ?av of the roll-rate for each 
rolling maneuver. The following conclusions are evident from the tabulation and the figures: 

1 . The "optimum" value of constant roll-rate is  20 to 30% larger than the average 
value of the roll-rate for the particular family of maneuvers considered. 

2.  Even if one uses this optimum value , the accuracy of the method of this work i s  
far better than the accuracy of the constant roll-rate method. 

response x(t) = [ b ( t )  , 
conditions xo = x(0) = 

Analytical expressions for the time history of a maneuver starting from arbitrary 
non-zero init ial conditions. - The method was extended to the case of a rolling maneuver 
starting from non-zero init ial conditions in the variables Act, 8 ,  q, and r. The airplane 

@(t), q(t), r(t)] to an arbitrary rolling maneuver p(t), with init ial 
b y o f  bf qof r 0 3 , i s  governed by the equation 

. 
x = A(p(t))x + u(p(t)) 

= A(P + 2t))x + u(p(t)) 

= A x + x(t)x + u(p(t)) 
0 

Repeating the steps of the method and taking into consideration the non-zero value of the 
init ial conditions x(O), the successive approximations 

t n  

where the terms W (t,z) are defined by the following k 

N Z  

0 
A t  

xn(t) can be expressed as 

recurrence re lati onsh i p: 

k =  1 

k = 2,3,. . .n 

(34) 

0 
where H(t) = e and 6(.) i s  the unit-impulse function (delta function). 
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TABLE I I  

I ! 

(Y I B 
m 1.0 1.5 !2.0 12.5 3.0 3.5 '4.0 '1.0 1.5 2.0 2.5 3.0 '3.5 4.0 

P 
(Maneuver) 

Average Va Iue I 

of Roll-rate .68 .87 I .92 .94 l.945 .95 -955 .68 .87 .92 .94 .945 .95 .955 

I 

Value of Constant 

.8 1.0 '1.0 1.0 1.0 1.0 1.0 '.8 1.2 1.2 1.2 1.2 1.2 1.2 Roll-rate for 
least average 
error estimate 

Value of Constant 1 
I 

Roll-rate for .8 1.2 1.3 1.3 1.3 1.3 1.3 f.8 1.0 1.2 1.2 1.2 1.2 1-2 
best peak 
estimate 

Value of Constant 
I 

Roll-rate for I 
best "overa I I "  .8 1.1 1.2 i1.2 1.2 1.2 1.2 .8 1.1 1.2 1.2 1.2 1.2 1.2 
estimate I ; 

I 

I 
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FIGURE 7. COMPARISON OF EXACT AND APPROXIMATE RESPONSES 
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FIGURE 12. COMPARISON OF EXACT AND APPROXIMATE RESPONSES 
IN B FOR ROLLING MANEUVER Pm= -2.5 RAD/SEC 
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FIGURE 23. COMPARISON OF ct AND %RESPONSES WITH 
RESPONSES RESULTING FR M VARIOUS VALUES 
OF CONSTANT ROLL-RATE (0.8 - 3.0 RAD/SEC) 
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Accuracy of the methd for maneuven involving prolonged durations of unstable 
roll-rate. - The accuracy of the method was tested for rolling maneuvers that assume un- 
stable values of roll-rates for a relatively long period of time. The responses x,(t), x (t) 

and x$) were obtained for the maneuver p(t) given by 
2 

p(t) = -2.5(1 - e 0 < - t 52.5 (35) 

t 22.5 (36) 

-1.2t) 

-1.2t 
p(t) = -2.34e 

Compared to the family of maneuvers studied in a previous section, this maneuver 
involves a relatively lengthy interval of unstable roll-rates, as shown in figure 25. Figures 
26 and 27 give the time histories for @ and cy respectively. As might be expected, these 
plots indicate that the approximate responses cyn and Pn exhibit a slower rate of convergence 
at the values of t for which p(t) i s  within, or close to, the unstable range of roll-rates. 
Nontheless, the agreement of the first approximations cy1 and B 1  with exact responses i s  
substantially better than the agreement provided by cyc and Bc which are computed on the 
basis of the constant roll-rate approximation of previous studies. Table Illgives the peak 
values of the various approximate responses: 

TABLE 1 1 1  

cy cy cy c y ,  (Y 
0 0 0 0 0 

1.02 0.38 0.95 1.04 1.12 

2.46 0.16 1.35 1.92 2.80 

Improving accuracy of method by piece-wise consideration of maneuver. - 
The convergence and accuracy of the responses xn(t) can be ameliorated by considering a 
given maneuver p(t) as a sequence of two maneuvers of shorter duration, with the terminal 
values of the first maneuver acting as the init ial  values of the second maneuver. This i s  
feasible since we can obtain expressions for the time history of a maneuver starting from any 
init ial values in the variables ACY, p, q, and r, as given by (33) and (34). This procedure 
was applied to the maneuver considered in the previous section as given by (35) and (36). 
The responses xn(t) were first obtained for the initiation phase of the maneuver given by 
(351, and the values ~ ~ ( 2 . 5 )  were used as init ial  values for the termination phase given by 
(36). Figures (28) and (29) show the time histories thus obtained for Band cy, which indicate 
a substantial enhancement in the accuracy (convergence) of the approximate responses over 
the corresponding responses given in figures (26) and (27), respectively. 
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Utilization of the .Method - Usefulness of the Analytical Expressions 

in this section we illustrate the utilization of the method and demonstrate the usefulness 
of the analytical expression in the predictive study of the airplane dynamic response. Recall 
that the method provides analytical expressions for the mapping x(t) = MCp(t)], in which the 
response x(t) is  expressed explicitly in  terms of the maneuver roll-rate p(t). The analytical 
expressions for M may be usefu I in different ways. For any specific maneuver, one may sub- 
stitute the given expression of p(t) into M to obtain the response x(t), from which the peak 
excursions of the various variables may be obtained. The analytical expressions for the map- 
ping M may also be used to study the dependence (and sensitivity) of the response x(t) on the 
details of the maneuver p(t), such as level, rise time, slope, duration, etc. Simple ways for 
parametrizing the maneuver p(t) may be employed, and the mapping x = M(p) may then be 
used to obtain expressions for the response x(t) in terms of the selected parameters. Further- 
more, in view of the simpler analytical nature of the mapping x = M( p) in comparison to 
the original equations of motion, one may find it advantageous to use the expressions of the 
mapping x = M(p) to obtain the response x(t) on the digital computer with considerable savings 
in  programming effort and computation time. 

To illustrate these points, a demonstration case-study was performed using the specific 
parameters of the F-100A. Explicit analytical expressions were obtained for the impulse 
response matrix H(t), which was then used to generate the approximate analytical expres- 
sions for a(t) and p(t) in response to the family of parameterized rolling-maneuvers {p(t)]pm 
described earlier. The analytical expressions were then employed to obtain information 
about peak excursions. Analytical expressions were obtained relating the magnitude of the 
response peak excursion to the value of the maneuvers index Pm. A l l  of the predictions 
based on the analytical expressions were in agreement with the information previously ob- 
tained via numerical integration. 

A t  
0 

The impulse-response matrix H(t).- The matrix H(t) = e appearing in the analytical 
expressions as given by (24) and (25) may be determined by any of the standard methods for 
obtaining the state-transition matrix of a linear system (ref. 9). The matrix H(t) was 
determined for the parameters of the F-100A as: 

H(t) = 10-2V(t) 

where 

cos. 96t , e- 206tsin .96 t) -.355t -.355t -.206t 
V(t) = (e cos2.84t, e s i n  2.84t, e 

and where the multiplication V(a,b,c,d) is  an inner product (dot product), e.g. 

V(71 , 11,29,8) = e - .355t(71 cos 2.84t + 1 1  sin 2.84t) + e  -.206t(29 cos .96t + 8 sin .96t) 
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Analytical expressions for the approximate responses.- The matrix H(t) can be used to 
generate analytical expressions for the approximate time histories in response to a rolling 
maneuver p(t). Ignoring the effects of the weight terms and the elevator and rudder inputs 
(basic case), the input vector becomes 

u(t) = CO,p(t),O,Ol (37) 

- 

Substituting for u(z) and H(t - z) in the expressions (23) - (25), the following expression for 
a (t) was obtained: 

t 

0 
Ignoring the smaller terms, one has 

t 
U,(t) =r p(t - z)[47e 

0 

1 

a,(t) = p(t - z) [(-3,47,3,-36) V(z)]dz 

sin 2 . 8 4 ~  - 36e-'206z sin .96zldz (38) - .355z 

Substituting the expression for the parametrized family of maneuvers described previously, 
namely, 

-0.6t) 
p(t) = P (1 - e  

m P 
, o 2 t % (Initiation) 

m 

the following approximate expression for the cy response was obtained in terms of the 
maneuver parameter P * 

m' 

Initiation Phase 

- .6t 21-r 
-1) 3 , 0 5. t 5 - 

m 
cyl(t) - P, [ .226e-'206tsin .96t + .2(e P - 

Recovery Phase (t 2 2n/Pm) 

Prediction of dynamic response information from the analytica I expressions. - Considering 
these expressions for the range of values of P 

F namely -4 5 Pm 5 -1, the following information about the response in CY was predicted in a 
straightforward fas h ion : 

of the family of maneuvers studied earlier, 
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1 . The motion in cy is a damped oscillation with a period of approximately 6 sec. 

2. The first relative peak value of 7 occurs during the initiation phase of the 

maneuver at t = 1.4 sec, and the value of the peak i s  1 

m 
al(tl) = ~ ( 1 . 4 )  = 0.053P 

- 2l-r l-r 
3. The second relative peak value occurs at approximately t2 -m +-= 

m 
21-r - + 1.65, i .e. 1.65 seconds after the removal of ai leron. The magnitude of 

this peak i s  

l p,l 

For the range of Pm considered, I a,(t )I > Icyl(tl)l , therefore, the expression for 

cyl(t2) represents the variation of the absolute peak value as a function of Pm. Hence, this 
analytical expression corresponds to the graph cy1 shown in figure (30) which was obtained 
previously (see figure 16) from several time-history runs on the digital computer. 

2 

I t  should be noted that the above information predicted by inspection of the analytical 
expression i s  in good agreement with the time-history runs in figures ( 2  ) thru (15) obtained 
by numerical integration of the equations of motion on the digital computer. 

Relating the mcneuver roll-rate time history p(t) to aileron input bn(t).- It has been 
argued so far that the analysis relating the airplane dynamic response t o  the kinematic des- 
cription of the maneuver p(t), rather than to the aileron control input 6a(t), i s  useful in its 
own right, particularily in a preliminary design effort where the characteristics of the flight 
control system are not fully specified. In the second portion of this study the airplane dyna- 
mic response to an arbitrary aileron input 6a(t) was investigated. However, i t  should be 
noted at this point that for any rolling maneuver specified spatially by the kinematic des- 
criptor p(t), one may use the roll equation of motion (5) to obtain the corresponding aileron 
deflection 6a(t). In other wcxds, equation (5) provides a means of deducing the aileron 
input sa(t) that would be required to realize a specified roll-rate time-history p(t). Equation 
(5) can be written as 

~ 
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Substituting the expressions for 8 ,  q, and r in terms of p(t), namely, 

one obtains an expression for 6,(t) in terms of p(t): 

-0. 
6 

Recall that the above relationships are valid under the assumption C 
6 n 
a a 

Another consideration, which has a bearing on the problem of relating p(t) and 6,(t), i s  
the question of how to specify the shape of maneuver roll-rate time-history p(t), and the re- 
lated question of how to parameterized p(t) in meaningful and representative way for any 
given airplane. The results to be presented the remaining portion of this study on the air- 
plane response to specified aileron input $(t) are helpful in answering these questions. A 
simple way to answer these questions for any particular airplane configuration would be to 
obtain a number of time-histories of the p(t) response to what might be considered as repre- 
sentative aileron inputs 6,(t) applied during typical rolling maneuvers of the specific air- 
plane under consideration. 



AIRPLANE MOTION IN RESPONSE TO AN ARBITRARY AILERON ACTUATION 

X '  

In this portion of the study, the dynamic response of the airplane resulting from a 
general actuation of the aileron input 6a(t) i s  considered. Two types of results are obtained. 
The first type pertains to the derivation of analytical expressions of the airplane motion in 
terms of the aileron input 6a(t), analogous to the expressions in terms of p(t) obtained in the 
f i rs t  portion of the study. The second category of results pertains to the stability of motion 
under a general aileron input 6a(t). Bounds on the motion variables are derived. A 
stability criterion i s  also presented. 

Analytical Expressions for Airplane Motion in Terms of Aileron Input 6 (t) 
a 

The method presented in the first portion of this study was extended to relate the motion 
variables during a rolling maneuver to the aileron input Sa(t). The extended method 
generates analytical expressions for U, B, q, r, p in terms of an arbitrary given 6,(t), 
analogous to the expressions of a, B, q, r in terms of p(t) obtained previously. 

Outline of method. - Let the expressions for the motion variables in terms of p(t) be 
denoted by the mapping x = M(p): 

p L - ~ ~ \  x 

The fifth equation of motion (roll equation), namely, 

6 - Cp =C66a+ BB + Dr + Eqr 

may be regarded as a mapping from (6  ,x) into p: 
a 

The iterative procedure for obtaining successively more accurate expressions for x and p in 
terms of 6, i s  described as follows: For the given 6, obtain from M5 a first estimate on p 
denoted as p i .  Use p i  into M to obtain an estimate x1 = Mgpl), then use xi  in M5 to 
obtain a second estimate p2, and so on. The accuracy and rate of convergence of this 
iterative procedure i s  dependent on the accuracy of the first estimate p1. Two methods may 
be used to obtain the f i rs t  estimate p1 from the roll equation in a straightforward manner: 
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1. Consider p1 as resulting only from the aileron input 6 (t): 
a 

2. Ignore the term Eqr in the roll equation and replace B and r by their expressions 
in terms of p(t) as obtained previously. The resulting integro-differential equation 
i s  a mapping from 6 (t) into p(t): 

a 

- Cp - BB(p) - Dr(p) = C6ha 

from which an expression for p in terms of 6 can be obtained. 1 a 

Derivation of motion analytical expressions in terms of 6a(t). - Recall the expressions for 
the airplane response Xn(t) = LQ(t), Bn(t), qn(t), rn(t)I in terms of the roll-rate variation 
p(t). Denote the dependence of x (t) on p(t) by the functional M n nf  

where Mm(p), MB,(p) , M 9” (p) , Mrn(p) are the expressions for an , Bn , qrf and r n in terms 

of p(t). We shall use these expressions together with the roll equation, namely, 

6 - Cp - BB - Dr - Eqr = C66, (41) 

to derive analytical expressions for a, $, p, q, r in terms of an arbitrary given 6 (t). 
Rewriting (41) as a 

b - CP = C66a + BB + Dr + Eqr = C 6 a  6 + f (42) 

where 

f = B$  + Dr + Eqr (43) 

The function f wi l l  be treated as a forcing function in equation (42). For the given 6,, one 
can use equation (42) to obtain a first estimate pl(t) for p(t), as outlined in the previous 
section. Let 
as given by (40): 1 , Bn l ,  qnl , rnl be the expressions for a,.., , Bn, qn , rn corresponding to p 

Let fn l  be the first approximation to f obtained from (43) by replacing B, q, and r by Bnl , 
qn1’ n l  

and r respectively: 
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where 

L (.) E BM ( * )  + DMrn(*) + EM ( a )  M ( * )  n Bn qn rn 

Using fni as an approximation to f, one obtains from (42) the second approximation p in a 
straightforward fashion : 2 

F 2 - C p 2 = C g b a + f  ( p ) = C  6 + L  ( n l  1 6 a n PI) 

t 

0 

C(t - x) C t  
= [C, 6 + L (P1)J * e = J  CC, 6,(x) + Ln(p1(x))]e dx 

p2 a n  

Repeating this procedure for p2 to obtain p3, and so on, one obtains the following recur- 
rence relationships for p : 

m 

m = 2,3,4,. . . ct 
Pm = K, 6a + Ln(Pm-,) 1 * e (44) 

and the corresponding expressions for U, 8,  q, and r 

The relationships in (44) and (43, together w i t h  the init ial expression for p,, are the 
required analytical relationships representing the approximate responses in a, 8,  p, q, and r 
for an arbitrary given 6a(t). The index m represents the number of iterations and, therefore, 
the degree of accuracy, in relating p(t) to the given 6(t), while the index n represents the 
degree of accuracy in relating a, B, q, and r to p(t), as described in the results of the 
previous sections which indicate that fairly accurate results should be obtained by taking 
n = l o r n = 2 .  

First approximation of p(t) in terms of 6,(t).- The init ial approximation p can be 
related to 6 (t) via equation (42) by either of the following methods: 

1 
a 

1. Consider p as resulting only from the aileron input 6 (t): 
1 a 
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2. Ignore the term Eqr in equation (42) and replace l3 and r by their first approximate 
expressions B and r in terms of p as obtained previously: 1 1 

F1 - Cpl - Bpl * h22 - Dpl * h42 = C 6 a  6 

where h22 and h42 are entries from the impulse response matrix H(t) = [hi i l .  The 
linear equation in (46) can be solved for p1 in terms of ha. Using the Laplace 
transform method one obtains an impulse response function hp6 that relates p i  to 6, 
in (46): 

t 

where h i s  the inverse Laplace transform of 
P6 

c 6  H (S) = 
p6 S - C - BH22(S) - DH42(S) 

Method 2 provides a better approximation of 6 . However, method 1 involves a simpler 
computation. 

0 

Stability of Airplane Motion Resulting from an Arbitrary Aileron Input 6a(t) 

In the last part of this study, a method for analyzing the stability of motion in response 
to a general aileron actuation ha(t) i s  presented. The predictive method provides bounds on 
motion variables. The method i s  also used to derive a stability criterion for boundedness in 
the form of an algebraic inequality in terms of the aileron input and the airplane parameters. 

Bounds on the motion variables. - Consider the rol l  equation 

A 
6 - C p - B B - D r - E q r = C  6 E 6  

6 a  a 

Replacing B, r, and q by their expressions in terms of p, one has 

where h22, h32, h42 are the appropriate entries from the impulse response matrix H(t) = 
Ch..I. This nonlinear integro-differential equation relating p to 6, i s  modeled into a feed- 
baAL system w i t h  a single product nonlinearity as shown in Figure 31. The linear system G 
wi th  a single input and two outputs i s  simplified in Figure 32, and characterized by the two 
impulse-response functions h and h * 

r 9' 
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A A 
r = ( 6  - f ) * h  = 6  * h  - f * h  r 

a r a r  

A A 
q = ( 6 a - f ) * h  = 6  * h  - f * h  

4 a q  9 

I r l  $16 ar I+ I f  * h r 1 =I6 ar I+ 

141 46aq l+  If * h I = I  6 I+ 9 a q o  

f = Eqr 

t 
Jf(x)h r (t -x)dx 
0 

t 
f(x)h (t - x)dx 

9 

(47) 

(48) 

Consider the function F(t) defined as follows: 

Note that r(t) i s  a nondecreasing function, and that i t s  increasing portions are identical to 
/f(t)l . Similarly, define the functions F(t), $t), (t), b (t) as 

ar aq 



- 
6 (t) = sup 
ar C0,tI 

- 6 (t) = SUP 

aq [o,t l  

From (50) and (52) one obtains 

Ir(t)\ g F (t) + r(t) A (t) 
ar r 

where 
t t 

t t 

Note that Ar(t) and Aq(t) are non-decreasing functions of t. Since 6,r(t), 6,q(t), r(t) are 
also non-decreasing functions of t, i t  follows that the right-hand-sides o i  inequality (52) and 
of (53) are non-decreasing functions of t. Consequently i t  follows from (52) and (53) that 

sup /r(t)l 5 6 (t) + r(t) A (t) ar r co, t l  

or 

- 
r(t) F (t) + A (t) T(t) ar r 

And since f(t) = Eq(t)r(t), one has 

- 
f(t) I; IE1 3t)  

hence, 

- 
r(t) 6 (t) + \ E /  F(t) {(t) Ar(t) ar 



From these inequality conditions we shall now deduce conditions that guarantee the 
boundedness of r(t) and q(t), and derive explicit bounds R(t)  and Q(t) on r(t) and q(t), 
respectively. Combining the inequalities (54), (55), and (56), keeping in mind that a l l  
terms are positive, one obtains 

F(t)G(t) C6 (t) + a (t) F(t) ;i(t)ICb (t) + aq(t) F(t) ;F(t)I 
ar r aq 

x(t) 2 0 

Letting 

c(t) 5 s (t) F (t) 
ar aq 

the conditions may be expressed as 

2 
a(t) x (t) + b(t) x(t) + c(t) 2 0 

(59) 

These two inequalities must be satisfied for a l l  t 2 0. We can now determine conditions on 
a(t), b(t), and c(t) which would ensure that x(t) satisfying (60) and (61) be a bounded func- 
tion. We s h a l l  assume that x(0) = F(0) q(0) = 0, which would be true for a maneuver starting 
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from zero init ial conditions. The analysis can be extended to the general case x(0) #O. We 
shall also assume that x(t) i s  a continuous function. This i s  justified by the fact that the 
physical quantities r(t) and q(t) cannot be discontinuous variables. 

The inequalities (60) and (61), which must be satisfied for a l l  t, impose a restriction on 
the values that x(t) may take. For any given t, let Xt be the set of a l l  values of x(t) that 
satisfy (60) and (61): 

2 
ax + b x + c r O  

t 

Figure 33 shows the set Xt  for various conditions on the functions a(t), b(t), and c(t). Recall 
from ( 5 3 ,  (58), and (59) that a(t) r0, c(t) r0, but b(t) can take negative values. From 
Figure 33a, i t  i s  easily seen that if b2 - 4ac 5 0, then Xt = [O,..]. Figure 33b represents 
the condition b2 - 4ac > 0, b 7 0, for which also Xt  = [O,..]. In Figure 33c, the condition 
b2 - 4ac > 0, b 0, forces the set X into two disjoint sets on the positive axis 

t 

Xt = tO,r,(t)l U tr2(t),m3 , r2 > rl 

where r,(t) and r (t) are the roots of the equation 2 
2 

a(t)x + b(t)x + c(t) = 0 

Recall that x(t) E Xt for a l l  t. Recall also that x(0) = 0 and x(t) i s  continuous. This implies 
that x(t) starts in the set [O,rl(t)l and remains in [O,rl(t)l for a l l  t. Thus, under the 
conditions 

b2(t) - 4a(t) c(t) > 0 , b(t) < 0 , for a l l  t 

the time history x(t) i s  bounded by the function r,(t) 

x(t) 5 r,(t) = -b(t) - JbL(t) - 4a(t) c(t) 
2a(t) 

Recalling that x(t) = F(t) $t), and substituting the expressions for a(t), b(t), c(t) from (57) 
through (59) one h a s  

I - a K  - a K  - [ I  - a ~  - a  K ~ ~ - 4 0 %  a 6 -- r aq q ar r aq q ar r aq q ar 
r q s  2a Q 

r q  

Substituting into (54) and (53, and letting 



(4 

b - 4ac 0 2 

b e 0  

FIGURE 33. GRAPHICAL REPRESENTATION OF BOUNDS 
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one obtains 

1 - 6 (t) + 6At) -JI1 - 6 (t) - 6 r (t)12 - 4aq(t)6r(t) 
q 9 

2a (t) 
9 

Ir(t)ls r(t) 5, R(t) 

2 
1 - 6 (t) + aq(t) - [l - 6 (t) - 6 (t)I - 46q(t)6r(t) 

(64) 
r 9 r 

\q(t)ls 3t) Q(t) = 2a (t) r 

These expressions are the required bounds R(t) and Q(t) on r(t) and q(t), respectively. For 
any given aileron input 6a(t), one determines 6r(t) and tjq(t) from (63) and (49) and substitutes 
in the above expressions to determine the time-history bounds R(t) and Q(t). Recal I that the 
expressions for the bounds in (64) are valid only i f  the condition in (62) i s  satisfied for a l l  t: 

[l - 6 (t) - 6 r (t)? - 46q(t) 6 j t )  > 0 
9 

6 (t) + 6 (t) - 1 < 0 (65) 4 r 

These conditions wi l l  be used in a following section to derive a stability criterion which 
defines the range of aileron inputs 6a(t) for which boundedness (non-divergence) of the air- 
plane motion can be guaranteed. 

Bounds on cr(t) 
q(t) , corresponding bounds on p(t), a(t), and B(t) can be determined by relating these time 
histories to r(t) and q(t). From figure 31 it i s  easily seen that p(t) i s  the output of a linear 
system whose input i s  6a(t) - Eq(t) r(t). This i s  shown explicitly in figure 34, where the 
appropriate linear system i s  denoted by Lp, and its impulse response by h (t). The time 
history bound P(t) on p(t) may now be expressed in terms of 6 (t) , Q(t) [(t) , and h (t) 
as fol lows: 

F(t), and p(t) . - Having determined the bounds R(t) and Q(t) on r(t) and 

a P 

The function P(t) i s  a time-history bound on I p(t) I . Alternatively, one may determine 
upper and lower bounds on p(t) which we shall denote as P,(t) and P (t), respectively. 2 

P,(t) P(t) 5 P,(t) 
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FIGURE 34 LINEAR SYSTEM L P RELATING p(t) TO 
6 a I qI  AND r 
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Thus, the upper and lower bounds on p(t) are: 

Pl(t) = 6 (t) * h (t) + IE 
a P 

P2(t) = 6 (t) * h (t) - \ E  
a P 

Having determined bounds on p(t), the corresponding bounds on a(t) and B(t) can now be 
obtained from the expressions of a(t) and B(t) in terms of p(t): 

Alternatively, one may use the upper and lower bounds on p(t), namely P l ( t )  and P2(t), to 
determine upper and lower bounds nl(t) and $k) on u(t), H l ( t )  and @2(t) on B(t). For this 
purpose, we separate h12(t) into two functions h12(t) and h12(t), representing its positive and 
negative values, respectively, i .e. 

h 0) = h,2(t) whenever h12(t) 0 -1 2 

Note that h12(t) = L (t) + L12(t) for a l l  t. From (67), one has 
12 

a(t) = PO) * Kl ,(t) + L1 2(t)I = p(t) * Ll 2(t) + p(t) * -1 h 2 (t) 
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Thus 

Similarly for B(t): 

where 

Ql(t) = P,(t) * L22(t) + P2(t) * l122(t) 

Q2(t) E P2(t) * t;,,(t) + p 1 (t) * L2,(t) 

Stability criterion. - In the two previous sections we derived expressions for the bounds 
on the time-histories of r(t), q(t), p(t), q t ) ,  and B(t). Recall that the existence of these 
bounds and the boundedness of the airplane motion was guaranteed if condition (65) i s  
satisfied for a l l  t: 

2 
[l - 6 (t) - sr(t)I - 4aq(t) 6 r (t) > 0 

9 

I 1 - 6 (t) - 6 (t) > 0 for a l l  t (68) 
9 r 

I t  can be easily verified from the definitions that 6q(t) and 6r(t) are non-decreasing functions 
of time. This implies that the left-hand sides of the inequalities in (68) are non-increasing 
functions of t. Define 

d = l im 6 (t) 
t-03 

r d = l i m  6 (t) , 9 r 4 t'cn 

I t  follows that the conditions in (68) are satisfied i f f  

2 [l - d  - d I  - 4 d  d > O  
9 r  9 '  

1 - d  - d  > O  
9 r  

or 

(d - 1)2 + (dr - 1)2 - 2d d > 1 
9 9 '  

d + d < l  
q r  
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Thus, i f  for a given aileron input 6a(t), the parameters dq and dr satisfy the conditions in 
(71), the response of the airplane i s  nondivergent. The set of values (dq,dr) which satisfy 
(71) i s  obtained graphically in figure 35 by plotting the boundary curves whose equations are 

2 2 - 1) + (dr - 1) -2d d = 1 
(ds q r  

0 
The f i r s t  boundary curve i s  in fact a parabola inclined at 45 and tangent to the axis at (1,O) 
and (0,l). The shaded region in figure 35 represents a l l  the points (dq,dr) which satisfy (71) 
and for which boundedness i s  guaranteed. By combining the various definitions that led to 
the definitions of dq and dr, one can express dq and dr in terms of the aileron time-history 
input 6a(t) and the system functions hq(t) and hr(t) of figure 32: 

r 1 

Stability of motion resulting from a step aileron.- This  criterion for boundedness, pre- 
sented in the previous section takes a simple form for the special case where 6 (t) i s  a step 
input. Let a 

6 (t) = constant = 6 
a a 

Then from (73) and (74) we obtain 

where 

A 3 s lh (t)\ dt , A = J  Ih (t)] dt r 
g o  r O  

X X 

I r 
X 
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In the (d ,d ) plane of figure 35, equations (75) and (76) are the parametric equations of a 
straight line through the origin of slope Yr/yq. The intersection of this line with the 
boundary of the shaded region gives the largest value of I6al for which stability i s  guaranteed. 
This value i s  obtained from (72), (73, and (76) as: 

9 r  

If Y = yr = Y, then 16a\ 

tends to y . 
= 1/4y, which i s  also the l i m i t  of th,e expression in (77) as Y 

9 q max 

r 

71 



REFERENCES 

1 .  

2. 

3.  

4 .  

5. 

6. 

7. 

8.  

9 .  

72 

W. H.  Phillips, "Effect of Steady Rolling on Longitudinal and Directional Stability," 
NASA TN 1627, 1948. 

L. Sternfield, "A Simplified Method for Approximating the Transient Motion in Angles 
of Attack and Sides1 ip During a Constant Rol I ing Maneuver, 'I NACA Report 1344, 1958. 

M. T.  Moul and T. R .  Brennan, "Approximate Method for Calculating Motions in 
Angles of Attack and Sideslip Due to Step Pitching and Yawing Moment Inputs During 
Steady Roll," NACA TN 4346, Sept. 1958. 

W. J.  G . Pinsker, "Preliminary Note on the Effect of Inertia Cross Coupling on 
Aircraft Response in Rolling Manoeuvres," R.A.E. Tech. Note Aero 2419, November 
1955. 

W. J . Pinsker, 'Charts of Peak Amplitudes in  Incidence and Sideslip in Rolling 
Maneuvers Due to Inertia Cross Coupling," RAE, AERO 2604, April 1958. 

E.  K .  Haddad, "On the Lagrange Stability of Nonlinear Systems," Proceedings of the 
Southeastern Symposium on System Theory, Georgia Institute of Technology, April 1971 . 
E.  K . Haddad, "New Criteria for Bounded-Input-Bounded-Output and Asymptotic 
Stability o f  Nonlinear Systems, I' Proceedings of the Fifth International Federation of 
Automatic Control Congress, Paris, June 1972. 

E. K .  Haddad, "A Criterion for the Bounded Input, Bounded-Output Stability of Time- 
Varying Nonlinear Systems," SlAM Journal on Control, Vol. 11, No. 2, May 1973. 

L. A. Zadeh and C.  A. Desoer, Linear System Theory, McGraw-Hill, 1963. 


